perm filename LISPAX.LSP[F81,JMC] blob
sn#622593 filedate 1981-11-06 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 lispax.lsp[f81,jmc] ekl axioms for lisp
C00005 00003
C00007 ENDMK
C⊗;
;;; lispax.lsp[f81,jmc] ekl axioms for lisp
(proof lispax)
(DECL (U u0 u1 u2 u3 v v0 v1 v2 v3 W w0 w1 w2 w3) |ground| variable listp)
(DECL (X Y Z) |GROUND| VARIABLE sEXP)
(DECL (A B C) |GROUND| VARIABLE)
(DECL (PHI) |GROUND→TRUTHVAL| VARIABLE)
(DECL (NNIL) |GROUND| CONsTANT LIsTp)
(DECL (CONs) |GROUND⊗GROUND→GROUND| CONsTANT)
(DECL (CAR CDR) |GROUND→GROUND| CONsTANT)
(DECL (NULL) |GROUND→TRUTHVAL| CONsTANT)
(DECL (LIsTp) |GROUND→TRUTHVAL| CONsTANT)
(DECL (sEXP) |GROUND→TRUTHVAL| CONsTANT)
(AXIOM |∀U.sEXP(U)|)
(AXIOM |∀X U.LIsTp(CONs(X,U))|)
(AXIOM |∀U.NULL(U)≡U=NNIL|)
(AXIOM |∀X U.¬NULL(CONs(X,U))|)
(AXIOM |∀X U.CAR(CONs(X,U))=X|)
(AXIOM |∀X U.CDR(CONs(X,U))=U|)
(AXIOM |∀PHI.PHI(NNIL)∧(∀X U.PHI(U)⊃PHI(CONs(X,U)))⊃(∀U.PHI(U))|)
;;; Common defined functions
(DECL (*) |GROUND⊗GROUND→GROUND| CONsTANT NIL INFIX 840)
(axiom |∀u v.listp(u*v)|)
(AXIOM |∀U V.(U*V)=IF NULL(U) THEN V ELsE CONs(CAR(U),CDR(U)*V)|)
(decl (reverse list1) |ground→ground| constant)
(decl list |ground* → ground| functional)
(axiom |∀x.listp(list(x))|)
(axiom |∀x.list(x) = cons(x,nnil)|)
(axiom |∀x y.listp(list(x,y))|)
(axiom |∀x y.list(x,y) = cons(x,list(y))|)
(axiom |∀x y z.listp(list(x,y,z))|)
(axiom |∀x y z.list(x,y,z) = cons(x,list(y,z))|)
(axiom |∀u.listp(reverse(u))|)
(axiom |∀u.reverse(u) = if null(u) then nnil
else reverse(cdr(u)) * list(car(u))|)
;;; theorems taken as axioms for further proofs
(axiom |∀u v w.(u*v)*w = u*(v*w)|)
(axiom |∀x u v.cons(x,u*v) = cons(x,u)*v|)
(axiom |∀u v.reverse(u*v) = reverse(v)*reverse(u)|)